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Calculations of Coherent Scattering Factors for Helium-Like Ions from a
Radially Correlated Wave Function*

By R.P. Hurst{, JaAMEs MiLLER aND F. A. MATSEN
Departments of Chemistry and Physics, The University of Texas, Austin, Texas

(Recetved 3 June 1957 and in revised form 18 November 1957)

Coherent scattering factors are calculated for helium and helium-like ions from the Hylleraas—
Eckart radially correlated wave function. It is suggested that the method may be extended to
other atoms with less labor than is required to make Hartree~Fock-type calculations. A sizeable
disparity between corresponding correlated and uncorrelated results is noted for H—; this grad-
ually becomes smaller with increasing atomic number. At the larger values of sin 6/4, the correlated
results for H~ agree quite well with corresponding factors for the hydrogen atom.

Introduction

For a period of nearly two decades the atomic scat-
tering factors given by James & Brindley (1931) were
the most widely accepted for use in crystal-structure
determinations. Though the agreement with experi-
ment was surprisingly good, the improvement in
computational technique and in the X-ray data
themselves has stimulated a number of efforts to
improve these results. To mention three notable
examples, Thomas & Umeda (1957) have recently
published a very extensive Thomas—Fermi-Dirac
table of factors for Z greater than 24. Berghuis et al.
(1955) bhave made extensive Hartree—Fock self-
consistent field calculations, and McWeeny (1951)
has considered the effects of chemical bonding on the
atomic scattering factor.

The present effort is to investigate the effects of
including some radial electron correlation by using
the Hylleraas (1929)-Eckart (1930) radially correlated
wave function for He and He-like ions. Since this
wave function is known to give lower calculated ener-
gies than can be obtained by the Hartree-Fock ap-
proximation, it seems likely that scattering factors
calculated from this function may represent an im-
provement on the self-consistent field results. Further,
if this proves to be the case, the method is sufficiently
general that it can be applied to other atoms with less
labor than is required to make the Hartree—Fock-type
calculations.

Theory

In this work the scattering factors are taken to be
(see James, 1948)
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where
kS-r; = ur;cos o, (18)
u = 4msin 6/4 (1¢)
and
dr = dvydt,, (1d)
dt; = 7% sin o;dode;dr; . (le)
Since the Hylleraas-Eckart wave function is
¥ = a(1)b(2)+b(1)a(2), 2)
where
a(j) = (a%n)t exp [-ar], (3a)
b(j) = (b%/n)t exp [~br], (30)

one obtains on substituting equations (2) into (1),
after expanding the summation and combining like
terms,

f=@/m {SS [a(1)b(2) exp [i cos oy [a(1)b(2))dr; d,
+2 KS [a(1)b(2)] exp [¢ cos o ury1[0(1)b(2)]dT, dT,

+ SS [b(1)a(2) exp [ cos o ury ][B(1)a(2)]d7, dtg},

where (4a)

N-2 S (1) dr, ( 52(2) dz,

+25a(1)b(1)d11Sa(2)b(2)dr2. (4B)
Using the result

0 . 2ux

— dr = ———, 5
So exp [—or] 7 sin urdr o+ 27 (5)
a straight-forward integration in spherical polar co-
ordinates gives:
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N = 2[1+64(ab)?/(a+b)] . (6d)
All of the new results which are presented in this
paper were calculated from equations (6). The para-
meters a and b were taken from Shull & Léwdin (1956).

The numerical work was performed on an IBM 650
computer.

where

Results
In Table 1 are given the factors obtained for H-, He,
Li+ and Bet+.*

Table 1. Scaitering factors computed from radially
correlated wave functions

sin 6/ (A1)  H- He Li+ Bot++
0-000 2:0000 2:0000 2-0000 2-0000
0-025 1-8591 1-9887 1-9958 1-9978
0-050 1-5659 1-9553 1-9834 1-9914
0-075 1-2865 1-9020 1-9630 1:9807
0-100 1-0638 1-8316 19350 1-9660
0-125 0-8867 17478 1:9000 19472
0-150 0-7417 1-6543 1-8587 1:9247
0-175 0-6207 1-5546 1-8117 1-8987
0-200 0-5193 14521 1-7598 1-8693
0-225 0-4344 1-3494 1-7040 1-8369
0-250 0-3635 12486 1-6450 18017
0-275 0-3044 1-1512 1-5836 1-7641
0-300 0-2554 10584 1-5206 17243
0-325 0-2148 0-9708 14566 16827
0-350 0-1811 0-8889 1-3923 1-6395
0-375 0-1531 0-8128 1-3282 1-5951
0-400 0-1299 0-7424 1-2648 154977
0-425 0-1106 0-6777 1-2024 1-5036
0-450 0-09455  0-6184 11416 1-4570
0-475 0-08110  0-5641 1-0824 1-4102
0-500 0-06982  0-5147 1-0251 1-3634
0-550 0-05233  0-4287 0-9170 1-2706
0-600 003979  0-3577 0-8178 1-1799
0-650 0-03067  0-2992 0-7279 1-0923
0-700 0-02394  0-2511 0-6470 1:0086
0-750 001892  0-2114 0-5746 0-9294
0-800 001512  0-1787 0-5103 0-8549
0-850 001221  0-1517 0-4532 0-7853
0-900 0009949  0-1292 0-4027 0-7206
0-950 0-008183  0-1106 0-3581 0-6607
1-000 0-006785  0-09499  0-3188 0-6055
1-100 0-004772  0-07092  0-2536 0-5082
1200 0003446  0-05376  0-2029 0-4266
1-300 0-002547  0-04134  0-1635 0-3586

For the purpose of comparison, and in order to show
the trends, these results are compared with those of
the simpler approximation where a =b (as in the
usual Slater-type wave functions) and with previously
calculated factors for ions of Z up to 6 (see Table 2).
In addition, these results are plotted for H-, He, Li*
in Fig. 1.

Discussion
The data given in Table 2 clearly show that the
disparity between radially correlated and uncorrelated

* A table of these factors with increments of sin §/4 of
0:001 will be supplied on request.
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Fig. 1. Atomic scattering factor of (@) H—, (b) He, (c) Lit.

results is greatest for H— and gradually becomes
smaller with increasing atomic number. Shull &
Léwdin’s (1956) calculations show a similar trend in
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Table 2. Comparison of factors computed from various distributions

sin 6/ (A1) 0-00 0-10 0-20 0-30 0-40
H- 2-000 1-064 0-519 0-255 0-130
2:000 1-314 0-534 0:207 0-0889
He 2:000 1-832 1-452 1-058 0-742
2-000 1-853 1-498 1-098 0:761
2:000 1-88 1-46 1-05 0-75
Lit 2:000 1-935 1760  1-521 1-265
2-000 1-940 1-776 1-545 1-291
2-:000 1-96 1-8 1-5 1-3
Bet+ 2-000 1-966 1-869 1724  1-550
2-:000 1-968 1-876 1-737 1-566
2-000 2-0 1-9 1-7 1-6
B+ 2:000 1-979 1-919 1-824 1-703
2:000  1-980 1-922 1830  1-713
2-000 1-99 1-9 1-8 1-7
CHH+ 2000 1986  1.945 1879  1.792
2-000 1-986 1.946 1-882 1-798
R = Radially correlated. H =
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Fig. 2. Comparison of scattering factors for H~ with factors
for hydrogen atom.

that electronic energies computed by radially cor-
related, uncorrelated, and self-consistent field ap-
proximations agree better with increasing Z. The
James & Brindley (1931) results, interpolated from
self-consistent field, do not appear sufficiently accurate
to allow this type of comparison.

It is of interest to compare the results for H- with
corresponding scattering factors for the hydrogen
atom (see Fig. 2). These results show that the radially
correlated H- factors agree at the higher angles with
the hydrogen atom factors, whereas the uncorrelated
factors are much smaller. This may be interpreted
from the nature of the scattering operator, exp [¢£S -r],
in the following manner. In any system where ¥ is

0:50 0:60 0-70 0-80 1-00 Method
0-0698 0-0398 0-0239 0-0151 0-00679 R
0-0426 0-0225 0-0129 0-00784¢ 0-00336 N
0515 0-358 0-251 0-179 0-0950 R
0-515 0-348 0-237 0-165 0-0839 N
0-52 0-35 0-24 0-18 0-11 H
1-025 0-818 0-647 0-510 0-319 R
1.046 0-831 0:653 0-510 0-312 N
1-0 0-8 06 05 0-3 H
1-363 1-180 1-009 0-855 0-606 R
1-381 1-197 1-023 0-865 0-608 N
1-4 1.2 1-0 09 06 I
1-566 1-420 1-274 1-132 0-877 R
1-578 1-434 1-287 1-144 0-885 N
1-6 1-4 1-3 1-2 0-9 I
1-689 1-576 1-457 1-335 1-101 R
1-698 1-586 1.467 1-347 1-111 N

Hartree distributions (see James & Brindley, 1931).
Interpolated from Hartree distributions (see James & Brindley, 1931).

spherically symmetrical, such as is the case here,
equation (1) may be reduced to (see Eucken & Wolf,
1936)

f =

oo}
S 47r(r) sin ur/urdr
0

where 4 = 4z sin 0/2 .

Then the effect of increasing y (or sin 6/4) is to shift
the first minimum of sin ur/ur toward smaller 7
values. This reduces the contribution to the integral
giving f, of the electron distribution (4mr2o(r)) re-
mote from the nucleus (see James, 1948). Alterna-
tively, since f is a Fourier transform of g, variations in
the outer region of g affect mainly the inner region of f.

From this well-known fact and the results shown in
Fig. 2, we may conclude that the correlated electron
density for H— represents roughly an ‘outer’ orbital
plus a second ‘inner’ orbital which is very similar to
the density for the atom. The ‘outer’ orbital can be
assumed to make a relatively small contribution to
f at the large values of sin 6/A.
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